Read & Study the Bible Online - Bible Portal
The Principia: Mathematical Principles of Natural Philosophy
In his monumental 1687 work Philosophiae Naturalis Principia MathematicaPhilosophiae Naturalis Principia Mathematica, known familiarly as the PrincipiaPrincipia, Isaac Newton laid out in mathematical terms the principles of time, force, and motion that have guided the development of modern physical science. Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.
This completely new translation, the first in 270 years, is based on the third (1726) edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms.
Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the PrincipiaPrincipia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.
The illuminating Guide to the PrincipiaPrincipia by I. Bernard Cohen, along with his and Anne Whitman's translation, will make this preeminent work truly accessible for today's scientists, scholars, and students.
Paperback, 991 pages

Published October 20th 1999 by University of California Press (first published July 1687)

Book Quotes
considerable intellectual achievement. In particular, we should take note that this attitude enabled Newton to explore the conjectured consequences of philosophic questions as a form of “dreaming,” without thereby necessarily undermining in any way the results of the Principia, without thereby producing a “philosophical romance” in the way that Descartes was said to have done. I repeat what Newton said in the last paragraph of that preface: “And although the whole of philosophy is not immediately evident, still it is better to add something to our knowledge day by day than to fill up men’s minds in advance with the preconceptions of hypotheses.” Certain fundamental truths, such as the universality of the force of gravity acting according to the inverse-square law, were derived directly from mathematics; but in Newton’s mind even such a law—once found—had to be fitted into his general scheme of thought, and he came to believe that certain aspects of this law had been known to the ancient sages. Following the reorientation of Newton’s philosophy of nature, he came to believe that interparticle forces of attraction and repulsion exist. Such forces, according to Newton, are sufficiently short-range in their action (as he makes quite explicit in query 31 of the Opticks) that they do not raise a major problem of understanding their mode of action. They do not, in other words, fall into the category of the forces acting at a distance. His studies of matter, and in particular of alchemy, had made the existence of these forces seem reasonable. But does the reasonableness of such short-range forces provide a warrant for belief in the existence of long-range forces acting over huge distances? Consider the gravitational force between the sun and the earth: this force must act through a distance of about one hundred million miles. Even worse from the conceptual point of view is the force between the sun and Saturn, some thousands of millions of miles. Eventually Newton was to conclude that comets are a sort of planet, with the result that the solar gravitational force must extend

Group of Brands